Applications of antilexicographic order. I. An enumerative theory of trees
نویسندگان
چکیده
منابع مشابه
A Theory of Second-Order Trees
This paper describes a theory of second-order trees, that is, finite and infinite trees where nodes of the tree can bind variables that appear further down in the tree. Such trees can be used to provide a natural and intuitive interpretation for type systems with equirecursive types and binding constructs like universal and existential quantifiers. The paper defines the set of binding trees, an...
متن کاملEnumerative Sequences of Leaves in Rational Trees
We prove that any IN-rational sequence s = (sn) n1 of non-negative integers satisfying the Kraft strict inequality P n1 snk ?n < 1 is the enumerative sequence of leaves by height of a rational k-ary tree. Particular cases of this result had been previously proven. We give some partial results in the equality case.
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولEnumerative Applications of Symmetric Functions
1. Introduction. — This paper consists of two related parts. In the first part the theory of D-finite power series in several variables and the theory of symmetric functions are used to prove P-recursiveness for regular graphs and digraphs and related objects, that is, that their counting sequences satisfy linear homogeneous recurrences with polynomial coefficients. Previously this has been acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 1989
ISSN: 0196-8858
DOI: 10.1016/0196-8858(89)90026-2